مسلمانان علم ریاضی ، خاصه جبر و مقابله را به گونه ای پیشرفت دادند که می توان گفت آنان موجد این علم می باشند.اگر اصول و مبادی علم ریاضیات قبل از اسلام در دنیا وجود داشت ، لکن مسلمین انقلابی در آن ایجاد کردند و از جمله اینکه قبل از دیگران جبر و مقابله را در هندسه بکار بردند.
جبر و مقابله تا بدانجا مورد توجه آنان بود که مأمون عباسی در قرن سوم هجری ( قرن نهم میلادی ) به ابومحمد بن موسی ، یکی از ریاضیدانهای دربار خود امر کرد کتاب سادة عام الفهمی در جبر و مقابله تآلیف نماید.
محمدبن موسی ( فوت در سال 257 یا 259 هـ. ق. ) یکی از سه برادر دانشمندی بود که به بنوموسی شهرت داشتند.در نیمةدوم قرن سوم هجری ثابت بن قره( 221-228 هـ. ق. )طبیب ،ریاضیدان و منجم حوزه علمی بغداد خدمات بسیاری را در زمینه ترجمه کتابهای علمی از زبانهای سریانی و یونانی به زبان عربی انجام داد.
وی دارالترجمه ای تأسیس کرد که بسیاری از دانشمندان آشنا به زبانهای خارجی در آن کار میکردند. در این دارالترجمه بسیاری از آثار یونانیان نظیر آپولونیوس ، اقلیدس ، ارشمیدس ، تئودوسیوس ، بطلمیوس ، جالینوس و ائوتوکیوس به وسیله او یا تحت سرپرستی وی به عربی ترجمه شد.
تعداد صفحه: 18
نوع فایل: Word
فرمت فایل: docx
*** قابل ویـرایش
فهرست مطالب
تعریف
ملاحظات تاریخی
پیشامد
تعریف کلاسیک احتمال
احتمال کلاسیک
احتمال پسین یا فراوانی
قواعد کلی احتمال
شرایط احتمال
سه قانون مهم احتمال برای یک فضای نمونه در حالت کلی
انواع احتمال
احتمالهای اصل موضوعی
تعریف احتمال شرطی
دید کلی
احتمال شرطی برای 3 پیشامد
احتمال شرطی برای دو پیشامد مستقل
تفاوت "پیشامدهای دو به دو ناسازگار" و پیشامدهای مستقل"
قضیه بیز
احتمال پیشین و پسین
احتمال پیشین
احتمال پسین
توزیعهای احتمال
مقدمه
تعریف
توزیع برنولی
توزیع پواسون
تعریف
احتمال یکی از چندین کلمه ای است که برای بیان اتفاقات یا معلومات مشکوک به کار می رود. البته شانس، شرط بندی دیگر کلمات شبیه این، مفاهیمی مشابه احتمال را در ذهن ایجاد می کنند. در نظریه احتمال سعی بر ارائه مفهوم احتمال است.امروزه نظریه احتمال با بسیاری از شاخه های دیگر ریاضیات و بسیاری از حوزه های علوم طبیعی، تکنولوژی، و اقتصاد مرتبط است.
ملاحظات تاریخی
آغاز نظریه احتمال به اواسط قرن هفدهم باز می گردد. شرط بند با حرارتی با نام شوالیه دومره (de mere) حل مسئله ای را، که برایش مهم بود، از بلز پاسکال درخواست کرد.
شرط بند با معلوم بودن این مطلب که در یکی از مراحل میانی بازی، یکی از آنها دور و دیگری دور راه برده باشد، و ، طبق قرار قبلی، اولین کسی که دور را ببرد برنده کل بازی باشد. پاسکال راه حل خود را با پی یردو فرما که او نیز راه حلی برای این مسئله به دست آورد. درمیان گذاشت و راه حل سوم از کریستین هویگنس (1629ـ 1695) به دست آمد. مردان فرهیخته مزبور، اهمیت مسنله مزبور را در بررسی قوانین حاکم بر پیشامدهای تصادفی دریافتند. به این ترتیب، مفاهیم و روش های اولیه علمی جدید، از مساله های مربوط به بازی های شانسی گسترش یافت.
خیلی بعد، در قرن نوزدهم، توجه به سرعت افزاینده در علوم طبیعی، گسترش نظریه احتمال را به مواردی غیر از چهارچوب بازی های شانسی ضروری ساخت. گسترش مزبور رابطه ای تنگاتنگ با نام های ژاکوب برنولی (1654ـ1705)، آبراهام دوموآور (1667ـ1754)، پیرسیمون دولاپلاس (1749ـ 1827)، کارل فردریش گاوس (1777ـ 1855)، سیمون دنیس پواسون (1781ـ 1840)ف پافنونی لووبچ چبیشف (1821ـ1894)، آندری آندری ویچ مارکوف (1856ـ1922)، و در همین اواخر با اسامی الکساندر یاکوف لویچ خین چاین (1894ـ 1959) و اندری نیکولائویچ کولموگوروف (متولد 1903) داشته است.
تحقیق در پیشامدهای انبوه با بررسی قوانین حاکن بر پیشامدهای تصادفی مرتبط است. به عنوان مثال، تولید کالایی که موارد کاربرد روزانه دارد پیشامد انبوه و ظهور کالایی معیوب در میان آنها پیشامدی تصادفی است.
پیشامد پیشامد E ، به مفهوم پیشامد تصادفی ، نتیجه آزمونی است که گرچه میتواند رخ دهد ولی این رخ داد ضروری نیست . یک آزمون می تواند مشاهده یا آزمایش باشد و با مجموعه ای از شرایطی که باید برقرار شوند و با استفاده از تکرارپذیری مشخص می شود . حالت های حدی نیز به عنوان پیشامد در نظر گرفته می شوند : پیشامدحتمی ، پیشامدی است که به طور قطع رخ می دهد و پیشامد ناممکن، که هیچ گاه رخ نمی دهد از این قبیل اند. به عنوان مثال در انداختن یک تاس پیشامد آمدن عدد 7 یک پیشامد ناممکن پیشامد آمدن عدد 1 تا6 یک پیشامدحتمی است.
پیشامدها را دو به هر ناسازگار می گوئیم اگر تنها یکی از آنها به عنوان نتیجه آزمون بتواند رخ دهد . به عنوان مثال در بیرون آوردن یک مهره از ظرفی که محتوی مهره های قرمز و سیاه است ، بیرون آوردن مهره قرمز و سیاه است ، بیرون آوردن مهره قرمز و بیرون آوردن مهره سیاه ، ناسازگارند زیرا آن به طور همزمان نمی توانند رخ دهند.
هر گاه دو پیشامد مانند E1 و E2، دستگاه کامل پیشامد ها را تشکیل دهند هر یک از آنها متمم دیگری است به عنوان مثال در انداختن یک سکه ،"شیر" و "خط" متمم اند.
تعداد صفحه: 21
نوع فایل: Word
فرمت فایل: docx
*** قابل ویـرایش
فهرست مطالب
مقدمه
پیشینه
در دیگر علوم
تعریف تابع
تعریف دقیق
علامتها
مشخص کردن تابع
دامنه و برد تابع
تساوی دو تابع
تحدید و توسیع
تصویر و تصویر معکوس
اجتماع توابع-توابع چند ضابطهای
نمودار تابع
فضای توابع
توابع دو (یا چند) متغیره
انواع تابع
توابع چندجملهای
توابع مثلثاتی
توابع متناوب
تابع همانی ( y=x )
تابع قدر مطلق
تابع ثابت
تابع پوشا
منابع
فهرست اشکال
شکل ۱. نمونهای از یک تناظر که تابع نیست
شکل ۲. نمونهای از یک تابع
شکل ۳. نمودار پیکانی یک تابع
شکل ۴. نمونهای از نمودار یک تابع حقیقی در دستگاه مختصات دکارتی
شکل ۵
تعداد صفحه: 27
نوع فایل: Word
فرمت فایل: docx
*** قابل ویـرایش
فهرست مطالب
تاریخچه منطق فازی
تاریخچة مجموعههای فاز
تاریخچة مختصری از نظریه و کاربردهای فازی دهه 1960 آغاز نظریه فازی
دهة 1990 ، توجه محققان امریکا و اروپا به سیستمهای فازی
زندگینامة پروفسور لطفیزاده
تعریف سیستمهای فازی و انواع آن
منطق فازی چیست؟
مجموعههای فازی
فرمول ۱
شکل ۱
منطق فازی چگونه بهکار گرفته میشود؟
شکل ۲
شکل ۳
شکل ۵
تفاوت میان نظریه احتمالات و منطق فازی
شکل ۶
کاربردهای منطق فازی
کاربرد هوش مصنوعی
قاعده Soft Computing
زمینه های کاربرد منطق فازی درهوش مصنوعی
نمونه هایی از کاربرد عملی منطق فازی در هوش مصنوعی
کاربردهای صنعتی
نتیجه گیری
منابع:
تاریخچه منطق فازی
زمانی که در سال 1965 پروفسور لطفیزاده، استاد ایرانیالاصل دانشگاه برکلی، اولین مقاله خود را در زمینه فازی تحت عنوان مجموعههای فازی (FUZZY TEST) منتشر کرد، هیچ کس باور نداشت که این جرقهای خواهد بود که دنیای ریاضیات را به طور کلی تغییر دهد.
گرچه در دهه 1970 و اوایل دهه 1980 مخالفان جدی برای نظریه فازی وجود داشت، اما امروزه هیچ کس نمیتواند ارزشهای منطق فازی و کنترلهای فازی را منکر شود.
افتخار هر ایرانی است که پایه علوم قرن آینده از نظریات یک ایرانی میباشد؛ باید قدر این فرصت را دانست و در تعمیم نظریه فازی و استفاده از آن کوشش و تلاش کرد.
زمینههای پژوهش و تحقیق در نظریه فازی بسیار گسترده میباشد؛ پژوهشگران علاقهمند میتوانند با پژوهش و تحقیق در این زمینه باعث رشد و شکوفایی هرچه بیشتر نظریه فازی شوند.
در این مقاله سعی شده است که خوانندگان محترم با نظریه فازی و تاریخچه آن آشنا شوند و زمینههای تحقیق و پژوهش مورد بررسی قرار گیرد.
زمانی که در سال 1965 پروفسور لطفیزاده، استاد ایرانیالاصل دانشگاه برکلی، اولین مقاله خود را در زمینه فازی تحت عنوان مجموعههای فازی (FUZZY TEST) منتشر کرد، هیچ کس باور نداشت که این جرقهای خواهد بود که دنیای ریاضیات را به طور کلی تغییر دهد.
گرچه در دهه 1970 و اوایل دهه 1980 مخالفان جدی برای نظریه فازی وجود داشت، اما امروزه هیچ کس نمیتواند ارزشهای منطق فازی و کنترلهای فازی را منکر شود.
افتخار هر ایرانی است که پایه علوم قرن آینده از نظریات یک ایرانی میباشد؛ باید قدر این فرصت را دانست و در تعمیم نظریه فازی و استفاده از آن کوشش و تلاش کرد.
زمینههای پژوهش و تحقیق در نظریه فازی بسیار گسترده میباشد؛ پژوهشگران علاقهمند میتوانند با پژوهش و تحقیق در این زمینه باعث رشد و شکوفایی هرچه بیشتر نظریه فازی شوند.
در این مقاله سعی شده است که خوانندگان محترم با نظریه فازی و تاریخچه آن آشنا شوند و زمینههای تحقیق و پژوهش مورد بررسی قرار گیرد.
تاریخچة مجموعههای فاز
نظریة مجموعه فازی در سال 1965 توسط پروفسور لطفی عسگرزاده، دانشمند ایرانیتبار و استاد دانشگاه برکلی امریکا عرضه شد.
اگر بخواهیم نظریه مجموعههای فازی را توضیح دهیم، باید بگوییم نظریهای است برای اقدام در شرایط عدم اطمینان؛ این نظریه قادر است بسیاری از مفاهیم و متغیرها و سیستمهایی را که نادقیق و مبهم هستند، صورتبندی ریاضی ببخشد و زمینه را برای استدلال، استنتاج، کنترل و تصمیمگیری در شرایط عدم اطمینان فراهم آورد.
پرواضح است که بسیاری از تصمیمات و اقدامات ما در شرایط عدم اطمینان است و حالتهای واضح غیر مبهم، بسیار نادر و کمیاب میباشند.نظریة مجموعههای فازی به شاخههای مختلفی تقسیم شده است که بحث کامل و جامع در مورد هر شاخه، به زمان بیشتر و مباحث طولانیتری احتیاج دارد.
در این مبحث که با انواع شاخههای فازی و کاربرد آنها آشنا میشویم، تلاش شده است که مباحث به صورت ساده ارائه شود و مسائل بدون پیچیدگیهای خاص مورد بررسی قرار گیرد.
همچنین تلاش شده است که جنبههای نظری هر بحث تا حد امکان روشن شود؛ گرچه در بسیاری موارد به منظور اختصار، از بیان برهانها چشمپوشی شده است و علاقهمندان را به منابع ارجاع دادهایم. مطالعه این پژوهش میتواند زمینهای کلی و فراگیر دربارة اهم شاخههای نظریه مجموعههای فازی فراهم آورد؛ اما علاقهمندان میتوانند با توجه به نوع و میزان علاقه و هدف خود، به مراجع اعلام شده، مراجعه نمایند.
تاریخچة مختصری از نظریه و کاربردهای فازی دهه 1960 آغاز نظریه فازی
نظریه فازی به وسیله پروفسور لطفیزاده در سال 1965 در مقالهای به نام مجموعههای فازی معرفی شد.ایشان قبل از کار بر روی نظریه فازی، یک استاد برجسته در نظریه کنترل بود. او مفهوم «حالت» را که اساس نظریه کنترل مدرن را شکل میدهد، توسعه داد.
عسگرزاده در سال 1962 چیزی را بدین مضمون برای سیستمهای بیولوژیک نوشت: ما اساساً به نوع جدید ریاضیات نیازمندیم؛ ریاضیات مقادیر مبهم یا فازی که توسط توزیعهای احتمالات قابل توصیف نیستند.
وی فعالیت خویش در نظریه فازی را در مقالهای با عنوان «مجموعههای فازی» تجسم بخشید.
مباحث بسیاری در مورد مجموعههای فازی به وجود آمد و ریاضیدانان معتقد بودند نظریه احتمالات برای حل مسائلی که نظریه فازی ادعای حل بهتر آن را دارد، کفایت میکند.
دهة 1960 دهة چالش کشیدن و انکار نظریه فازی بود و هیچ یک از مراکز تحقیقاتی، نظریه فازی را به عنوان یک زمینه تحقیق جدی نگرفتند.
اما در دهة 1970، به کاربردهای عملی نظریه فازی توجه شد و دیدگاههای شکبرانگیز درباره ماهیت وجودی نظریه فازی مرتفع شد.
استاد لطفیزاده پس از معرفی مجموعة فازی در سال 1965، مفاهیم الگوریتم فازی را در سال 1968، تصمیمگیری فازی را در سال 1970 و ترتیب فازی را در سال 1971 ارائه نمود. ایشان در سال 1973 اساس کار کنترل فازی را بنا کرد.
این مبحث باعث تولد کنترلکنندههای فازی برای سیستمهای واقعی بود؛ ممدانی (Mamdani) و آسیلیان (Assilian) چهارچوب اولیهای را برای کنترلکننده فازی مشخص کردند. در سال 1978 هومبلاد (Holmblad) و اوسترگارد(Ostergaard) اولین کنترلکننده فازی را برای کنترل یک فرایند صنعتی به کار بردند که از این تاریخ، با کاربرد نظریه فازی در سیستمهای واقعی، دیدگاه شکبرانگیز درباره ماهیت وجودی این نظریه کاملاً متزلزل شد.
دهة 1980 از لحاظ نظری، پیشرفت کندی داشت؛ اما کاربرد کنترل فازی باعث دوام نظریه فازی شد.
مهندسان ژاپنی به سرعت دریافتند که کنترلکنندههای فازی به سهولت قابل طراحی بوده و در مورد بسیاری مسائل میتوان از آنها استفاده کرد.
به علت اینکه کنترل فازی به یک مدل ریاضی نیاز ندارد، میتوان آن را در مورد بسیاری از سیستمهایی که به وسیلة نظریه کنترل متعارف قابل پیادهسازی نیستند، به کار برد.
سوگنو مشغول کار بر روی ربات فازی شد، ماشینی که از راه دور کنترل میشد و خودش به تنهایی عمل پارک را انجام میداد.
یاشونوبو (Yasunobu) و میاموتو (Miyamoto) از شرکت هیتاچی کار روی سیستم کنترل قطار زیرزمینی سندایی را آغاز کردند. بالاخره در سال 1987 پروژه به ثمر نشست و یکی از پیشرفتهترین سیستمهای قطار زیرزمینی را در جهان به وجود آورد.
در دومین کنفرانس سیستمهای فازی که در توکیو برگزار شد، درست سه روز بعد از افتتاح قطار زیرزمینی سندایی، هیروتا (Hirota) یک روبات فازی را به نمایش گذارد که پینگپونگ بازی میکرد؛ یاماکاوا (Yamakawa) نیز سیستم فازی را نشان داد که یک پاندول معکوس را در حالت تعادل نشان میداد. پس از این کنفرانس، توجه مهندسان، دولتمردان و تجار جلب شد و زمینههای پیشرفت نظریه فازی فراهم شد.
دهة 1990 ، توجه محققان امریکا و اروپا به سیستمهای فازی
موفقیت سیستمهای فازی در ژاپن، مورد توجه محققان امریکا و اروپا واقع شد و دیدگاه بسیاری از محققان به سیستمهای فازی تغییر کرد.
در سال 1992 اولین کنفرانس بینالمللی در مورد سیستمهای فازی به وسیله بزرگترین سازمان مهندسی یعنی IEEE برگزار شد.
در دهة 1990 پیشرفتهای زیادی در زمینة سیستمهای فازی ایجاد شد؛ اما با وجود شفاف شدن تصویر سیستمهای فازی، هنوز فعالیتهای بسیاری باید انجام شود و بسیاری از راهحلها و روشها همچنان در ابتدای راه قرار دارد. بنابراین توصیه میشود که محققان کشور با تحقیق و تفحص در این زمینه، موجبات پیشرفتهای عمده در زمینة نظریه فازی را فراهم نمایند.
زندگینامة پروفسور لطفیزاده
استاد لطفیزاده در سال 1921 در باکو متولد شد. آنجا مرکز آذربایجان شوروی بود. لطفیزاده یک شهروند ایرانی بود؛ پدرش یک تاجر و نیز خبرنگار روزنامة ایرانیان بود.
استاد لطفیزاده از 10 تا 23 سالگی در ایران زندگی کرد و به مدرسة مذهبی رفت. خاندان لطفیزاده از اشراف و ثروتمندان ایرانی بودند که همیشه ماشین و خدمتکار شخصی داشتند.
در سال 1942 با درجة کارشناسی مهندسی برق از دانشکده فنی دانشگاه تهران فارغالتحصیل شد. او در سال 1944 وارد امریکا شد و به دانشگاه MIT رفت و در سال 1946 درجة کارشناسیارشد را در مهندسی برق دریافت کرد. در سال 1951 درجة دکترای خود را در رشتة مهندسی برق دریافت نمود و به استادان دانشگاه کلمبیا ملحق شد. سپس به دانشگاه برکلی رفته و در سال 1963 ریاست دپارتمان مهندسی برق دانشگاه برکلی را که بالاترین عنوان در رشتة مهندسی برق است، کسب نمود. لطفیزاده انسانی است که همیشه موارد مخالف را مورد بررسی قرار داده و به بحث دربارة آن میپردازد. این خصوصیت، قابلیت پیروزی بر مشکلات را به لطفیزاده اعطا نموده است.در سال 1956 لطفیزاده بررسی منطق چند ارزشی و ارائة مقالات تخصصی در مورد این منطق را آغاز کرد.پروفسور لطفیزاده از طریق مؤسسة پرینستون با استفن کلین آشنا شد. استفن کلین کسی است که از طرف مؤسسة پرینستون، منطق چند ارزشی را در ایالات متحده رهبری میکرد. کلین متفکر جوان ایرانی را زیر بال و پر خود گرفت. آنها هیچ مقالهای با یکدیگر ننوشتند، اما تحت تأثیر یکدیگر قرار داشتند.لطفیزاده اصول منطق و ریاضی منطق چند ارزشی را فرا گرفت و به کلین اساس مهندسی برق و نظریة اطلاعات را آموخت.
وی پس از آشنایی با پرینستون، شیفتة منطق چند ارزشی شد.
در سال 1962 لطفیزاده تغییرات مهم و اصلی را در مقالة «از نظریة مدار به نظریة سیستم» در مجلة IRE که یکی از بهترین مجلههای مهندسی آن روز بود، منتشر ساخت. در اینجا برای اولین بار عبارت فازی را برای چند ارزشی پیشنهاد داد.
لطفیزاده پس از ارائة منطق فازی، در تمام دهة 1970 و دهة 1980 به منتقدان خود در مورد این منطق پاسخ میداد. متانت، حوصله و صبوری استاد در برخورد با انتقادات و منتقدان منطق فازی از خود بروز میداد، در رشد و نمو منطق فازی بسیار مؤثر بوده است، به طوری که رشد کاربردهای کنترل فازی و منطق فازی در سیستمهای کنترل را مدیون تلاش و کوشش پروفسور لطفیزاده میدانند و هرگز جهانیان تلاش این بزرگمرد اسطورهای ایرانی را فراموش نخواهند کرد.
تعریف سیستمهای فازی و انواع آن
واژة فازی در فرهنگ لغت آکسفورد به صورت مبهم، گنگ و نادقیق تعریف شده است. اگر بخواهیم نظریة مجموعههای فازی را تعریف کنیم، باید بگوییم که نظریهای است برای اقدام در شرایط عدم اطمینان؛ این نظریه قادر است بسیاری از مفاهیم و متغیرها و سیستمهایی را که نادقیق هستند، صورتبندی ریاضی ببخشد و زمینه را برای استدلال، استنتاج، کنترل و تصمیمگیری در شرایط عدم اطمینان فراهم آورد
منطق فازی چیست؟
ساده ترین تلقی برای تعریف منطق فازی این است که " منطق فازی جواب یک سوال را به جای تقسیم به دو بخش درست یا نادرست،در اصل به یک محدوده جواب در این بین توسعه داده است". نمونه معمول آن،وجود رنگ خاکستری در طیف رنگی بین سیاه و سفید است.
اما دایره عمل منطق فازی،از این هم گسترده تر است و می توان با استفاده از قواعد منطق فازی ، جواب های فازی متناسب با پرسش را ارائه نمود. برای مثال، جمله " زمانی که باران می بارد، شما خیس می شوید" جمله نامفهومی نمی باشد، اما جمله " زمانی که مقداری باران می بارد، شما مقداری خیس می شوید" می تواند از نظرمقدار بارش باران یا مقدار خیس شدن ، واژه های مختلفی را به جای واژه " مقداری " بپذیرد.
واژگانی از قبیل { کم ، زیاد، خیلی کم ، خیلی زیاد، قدری و ... } این واژه ها واژه های زبان شناختی نام دارند، یعنی با مقادیر ریاضی نمی توان مقدار مشخصی را به آنها ربط داد.
اینجاست که منطق فازی وارد عمل می شود و با استفاده از مجموعه های فازی،برای متغیر میزان بارش باران، مجموعه ای را به شکل زیر صورت می دهد:
میزان بارش باران= { کم ، زیاد، خیلی کم ، خیلی زیاد، قدری و ... }
باید پذیرفت قواعدی نظیر این زیبا هستند، زیرا این ها قواعد بشری هستند. آنها نمونه خوبی هستند برای اینکه ما چطورفکر می کنیم و چطور نتیجه می گیریم. بیایید به سراغ نمونه دیگری برویم:
ازشما سوال می شود" آیا شغلتان را دوست دارید؟" پاسخ شما لزوماً بله یا خیر نمی باشد؛ بنابراین مجموعه جواب به صورت زیر خواهد بود:
جواب= { تا حدی، نه خیلی، تقریباً، اصلاً ، کم و بیش، خیلی و... }
به هر یک از این مقادیر،مقداری به عنوان " درجه عضویت" نسبت داده می شود، بدین معنا که مقدار مربوطه تا چه حد در این مجموعه عضو می باشد.
ریاضیات پایه و مقدمات آمار 1
تا 14 ترم همراه با پاسخنامه
ریاضیات پایه و کاربرد آن در مدیریت
تا 14 ترم
جزوه درس ریاضیات گسسته ( گراف )
ویژه داوطلبان آزمون سراسری
حل تست های تمرینی ، بررسی راه حل ها
تهیه خلاصه نکات با هدف :
1- نظم دهی و طبقه بندی نکات برای یادگیری فعلی ( افزایش سرعت انتقال ذهن )
2- مرور نکات مهم در زمان های کوتاه آینده