تعداد صفحه: 18
نوع فایل: Word
فرمت فایل: docx
*** قابل ویـرایش
فهرست مطالب
تعریف
ملاحظات تاریخی
پیشامد
تعریف کلاسیک احتمال
احتمال کلاسیک
احتمال پسین یا فراوانی
قواعد کلی احتمال
شرایط احتمال
سه قانون مهم احتمال برای یک فضای نمونه در حالت کلی
انواع احتمال
احتمالهای اصل موضوعی
تعریف احتمال شرطی
دید کلی
احتمال شرطی برای 3 پیشامد
احتمال شرطی برای دو پیشامد مستقل
تفاوت "پیشامدهای دو به دو ناسازگار" و پیشامدهای مستقل"
قضیه بیز
احتمال پیشین و پسین
احتمال پیشین
احتمال پسین
توزیعهای احتمال
مقدمه
تعریف
توزیع برنولی
توزیع پواسون
تعریف
احتمال یکی از چندین کلمه ای است که برای بیان اتفاقات یا معلومات مشکوک به کار می رود. البته شانس، شرط بندی دیگر کلمات شبیه این، مفاهیمی مشابه احتمال را در ذهن ایجاد می کنند. در نظریه احتمال سعی بر ارائه مفهوم احتمال است.امروزه نظریه احتمال با بسیاری از شاخه های دیگر ریاضیات و بسیاری از حوزه های علوم طبیعی، تکنولوژی، و اقتصاد مرتبط است.
ملاحظات تاریخی
آغاز نظریه احتمال به اواسط قرن هفدهم باز می گردد. شرط بند با حرارتی با نام شوالیه دومره (de mere) حل مسئله ای را، که برایش مهم بود، از بلز پاسکال درخواست کرد.
شرط بند با معلوم بودن این مطلب که در یکی از مراحل میانی بازی، یکی از آنها دور و دیگری دور راه برده باشد، و ، طبق قرار قبلی، اولین کسی که دور را ببرد برنده کل بازی باشد. پاسکال راه حل خود را با پی یردو فرما که او نیز راه حلی برای این مسئله به دست آورد. درمیان گذاشت و راه حل سوم از کریستین هویگنس (1629ـ 1695) به دست آمد. مردان فرهیخته مزبور، اهمیت مسنله مزبور را در بررسی قوانین حاکم بر پیشامدهای تصادفی دریافتند. به این ترتیب، مفاهیم و روش های اولیه علمی جدید، از مساله های مربوط به بازی های شانسی گسترش یافت.
خیلی بعد، در قرن نوزدهم، توجه به سرعت افزاینده در علوم طبیعی، گسترش نظریه احتمال را به مواردی غیر از چهارچوب بازی های شانسی ضروری ساخت. گسترش مزبور رابطه ای تنگاتنگ با نام های ژاکوب برنولی (1654ـ1705)، آبراهام دوموآور (1667ـ1754)، پیرسیمون دولاپلاس (1749ـ 1827)، کارل فردریش گاوس (1777ـ 1855)، سیمون دنیس پواسون (1781ـ 1840)ف پافنونی لووبچ چبیشف (1821ـ1894)، آندری آندری ویچ مارکوف (1856ـ1922)، و در همین اواخر با اسامی الکساندر یاکوف لویچ خین چاین (1894ـ 1959) و اندری نیکولائویچ کولموگوروف (متولد 1903) داشته است.
تحقیق در پیشامدهای انبوه با بررسی قوانین حاکن بر پیشامدهای تصادفی مرتبط است. به عنوان مثال، تولید کالایی که موارد کاربرد روزانه دارد پیشامد انبوه و ظهور کالایی معیوب در میان آنها پیشامدی تصادفی است.
پیشامد پیشامد E ، به مفهوم پیشامد تصادفی ، نتیجه آزمونی است که گرچه میتواند رخ دهد ولی این رخ داد ضروری نیست . یک آزمون می تواند مشاهده یا آزمایش باشد و با مجموعه ای از شرایطی که باید برقرار شوند و با استفاده از تکرارپذیری مشخص می شود . حالت های حدی نیز به عنوان پیشامد در نظر گرفته می شوند : پیشامدحتمی ، پیشامدی است که به طور قطع رخ می دهد و پیشامد ناممکن، که هیچ گاه رخ نمی دهد از این قبیل اند. به عنوان مثال در انداختن یک تاس پیشامد آمدن عدد 7 یک پیشامد ناممکن پیشامد آمدن عدد 1 تا6 یک پیشامدحتمی است.
پیشامدها را دو به هر ناسازگار می گوئیم اگر تنها یکی از آنها به عنوان نتیجه آزمون بتواند رخ دهد . به عنوان مثال در بیرون آوردن یک مهره از ظرفی که محتوی مهره های قرمز و سیاه است ، بیرون آوردن مهره قرمز و سیاه است ، بیرون آوردن مهره قرمز و بیرون آوردن مهره سیاه ، ناسازگارند زیرا آن به طور همزمان نمی توانند رخ دهند.
هر گاه دو پیشامد مانند E1 و E2، دستگاه کامل پیشامد ها را تشکیل دهند هر یک از آنها متمم دیگری است به عنوان مثال در انداختن یک سکه ،"شیر" و "خط" متمم اند.