مقدمه:
دیودها جریان الکتریکی را در یک جهت از خود عبور میدهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان میدهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی ، به آن دریچه یا Valve هم اطلاق شود. از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن میسازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث
میشودتا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا
(forward voltage drop)نامیده میشود که چیزی حدود ۰.۶ تا ۰.۶ ولت میباشد.
تعداد صفحه: 27
نوع فایل: Word
فرمت فایل: docx
*** قابل ویـرایش
فهرست مطالب
دیود چیست؟
بایاس کردن اتصال P–N
بایاس مستقیم
بایاس معکوس
ولتاژ شکست معکوس دیود
پدیده شکست زنر :
مقادیر حد در دیودها :
- حداکثر ولتاژ معکوس
الف ) حداکثر ولتاژ معکوس
ب) حداکثر ولتاژ معکوس مؤثر
ج ) ولتاژ معکوس قابل تحمل در وضعیت کار عادی :
2- حداکثر جریان مستقیم :
3- حداکثر جریان تکرای
4- حداکثر جریان لحظه ای
5- درجه حرارت محل پیوند
انواع دیود :
دیود معمولی
دیود زنر
استاندارد ولتاژهای زنر :
توان دیودهای زنر
ضریب حرارتی دیود زنر
دیود نور دهنده یا LED
فتو دیود ( Photo Diode ) :
دیود خازنی یا دیود واراکتور
دیود تونلی ( Tunnel Diode ) :
دیود اتصال نقطه ای ( Point Contact Diode )
تشخیص آند و کاتد و سالم بودن دیود :
تشخیص آند و کاتد و سالم بودن دیود با استفاده از اهم متر آنالوگ :
تشخیص آند و کاتد وسالم بودن دیود با استفاده از مولتی متر دیجیتالی :
نامگذاری دیودها
روش ژاپنی
روش اروپایی
روش آمریکایی
جدول مشخصات دیود 1N4001 تا 1N4007
دیود چیست؟
دیودها از نیمه هادی های نوع N و P ساخته می شوند . ( برای آشنایی با نیمه هادی ها ، به صفحه آشنایی با نیمه هادی ها از همین وب سایت مراجعه فرمایید ) . هرگاه دو کریستال نیمه هادی نوع N و P به هم اتصال یابند الکترونهای آزاد نیمه هادی نوع N که در نزدیکی محل اتصال P–N قرار دارند به منطقه P نفوذ می نمایند و با حفره های کریستال نوع P ترکیب می شوند و به این ترتیب حفره هایی از بین می روند و الکترونهای آزاد به صورت الکترون های ظرفیت درمی آیند . عبور یک الکترون از محل اتصال سبب ایجاد یک جفت یون می شود زیرا وقتی الکترونی از ناحیه N به ناحیه P وارد می شود در ناحیه N یک اتم پنج ظرفیتی الکترونی را از دست داده و به یون مثبت تبدیل می شود و در مقابل ، در ناحیه P یک اتم سه ظرفیتی الکترونی را دریافت می کند و به یون منفی تبدیل می شود . به این ترتیب در اثر عبور تعداد زیادی الکترون از محل اتصال نیمه هادی ها ، در محل پیوند تعداد زیادی یون مثبت و منفی ایجاد می شود . این یون ها در کریستال ثابت هستند زیرا به علت پیوند کووالانس بین الکترونهای اتم ها ، نمی توانند مانند الکترونهای آزاد حرکت کنند . بنابراین در محل پیوند ناحیه ای به نام لایه تخلیه به وجود می آید که در آن حامل های هدایت الکتریکی یعنی الکترونها و حفره ها وجود ندارند . به ناحیه تخلیه ، ناحیه سد هم گفته می شود . یون های مثبت و منفی در ناحیه تخلیه سبب ایجاد میدان الکتریکی می شوند . این میدان الکتریکی با عبور الکترونهای آزاد از محل اتصال مخالفت می کند . هرگاه میدان ایجاد شده به حدی برسد که مانع عبور الکترون از محل اتصال گردد حالت تعادل به وجود می آید و به این صورت دیود کریستالی ساخته می شود . ولتاژ ایجاد شده در ناحیه تخلیه ، پتانسیل سد نامیده می شود . در شکل (1) ساختمان دیود نمایش داده شده است .
شکل (1 (
در این شکل یون های مثبت ومنفی در ناحیه تخلیه و میدان الکتریکی ایجاد شده بین یون ها و همچنین نیمه هادی های نوع N و P به خوبی نمایش داده شده است . در این شکل دایره های سفید رنگ ، بیانگر حفره ها و دایره های دنباله دار قرمز رنگ ، بیانگر الکترونهای آزاد در حال حرکت هستند . در ادامه می خواهیم به بررسی این موضوع بپردازیم که اگر ولتاژی به دو سر اتصال P–N اعمال شود چه اتفاقی روی می دهد .
بایاس کردن اتصال P–N : هرگاه به دو سر اتصال P–N ولتاژی اعمال کنیم گوییم آن را بایاس نموده ایم . بایاس کردن اتصال P–N به دو صورت مستقیم و معکوس انجام می گیرد .
بایاس مستقیم ( Forward Bias ) : اگر قطب مثبت منبع تغذیه را به نیمه هادی نوع P و قطب منفی منبع تغذیه را به نیمه هادی نوع N وصل کنیم ، دیود را در بایاس مستقیم یا موافق قرار داده ایم . در شکل (2) بایاس مستقیم دیود نمایش داده شده است